Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model

نویسندگان

  • Fereshteh Dardmeh
  • Hiva Alipour
  • Parisa Gazerani
  • Gerhard van der Horst
  • Erik Brandsborg
  • Hans Ingolf Nielsen
چکیده

Probiotics have been proposed as alternatives to pharmacological products in several medical conditions including the modulation of obesity, which is frequently associated with poor semen quality. However, effects of probiotics on male fertility have been less investigated. This study assessed the effect of Lactobacillus rhamnosus PB01 (DSM-14870) on sperm kinematic parameters in Normal-weight (NW) and diet-induced obese (DIO) models. NW and DIO C57BL/6NTac mice were divided into two subgroups with or without a single daily dose (1x109CFU) of L. rhamnosus for four weeks. Sperm motility and kinematics together with blood lipid profiles and reproductive hormone levels were assessed using the sperm class analyzer system. Probiotic supplementation increased serum testosterone, LH and FSH levels in both NW and DIO groups resulting in significantly (P<0.05) higher velocity (VSL, VCL and VAP) and percentages of progressively motile sperm and significantly lower percentages of immotile sperm. Other kinematic parameters (Lin, STR, ALH and BCF) were also increased in both probiotic supplemented DIO and NW groups at the 10% level of significance. Probiotic supplemented DIO mice demonstrated significantly higher percentages of progressively motile sperm versus DIO controls. This study demonstrated the potential of L. rhamnosus PB01 as a regulatory agent with positive effects on weight loss and reproductive-hormones, significantly improving sperm motility and kinematic parameters in male DIO models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model

Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 10(9) CFU) of probiotics (Lactobacill...

متن کامل

Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet.

A high-fat diet disturbs the composition and function of the gut microbiota and generates local gut-associated and also systemic responses. Intestinal mast cells, for their part, secrete mediators which play a role in the orchestration of physiological and immunological functions of the intestine. Probiotic bacteria, again, help to maintain the homeostasis of the gut microbiota by protecting th...

متن کامل

Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice.

Many previous studies have reported that conjugated linoleic acid could be produced by starter culture bacteria, but the effects of the bacteria were not investigated. Moreover, there was no evidence of the conjugated linoleic acid-producing bacteria having potential health or nutritional effects related to conjugated linoleic acid, including reducing body fat. Here, we investigated the anti-ob...

متن کامل

Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP.

The aim of the present study was to investigate the antigenotoxic properties of the probiotic Lactobacillus rhamnosus IMC501; DNA damage was induced by one representative food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mice were treated orally with suspensions of lactobacilli for 10 days before administration of food mutagen. During the treatment, the abundance of lactobac...

متن کامل

P-58: BSO-Induced Oxidative Stress Affects Testicular Ultrastructure, Levels of Oxidative Markers, Testosterone and Sperm Fertility

Background: GSH is the main intracellular antioxidant and its level is important for protecting cell from oxidative stress. BSO inhibits GSH synthesis and cause oxidative stress. The study is designed to investigate the effect of BSO induced oxidative stress on testicular histology, semen parameters and sperm fertility. Materials and Methods: The adult male mice were divided into two groups of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017